
Journal of Student Research (2014) Volume 3, Issue 1: pp. 46-62

1. Department of Mathematics, Hostos Community College, City University of New York. Bronx, NY 10451

2. Mott Haven Village Preparatory High School. Bronx NY 10466

3. Collegiate School. New York, NY 10024

Mathematics Behind Image Compression

Stefany Franco
1
, Dr. Tanvir Prince

1
, Ildefonso Salva

2
, and Charlie Windolf

3

Image compression is fundamental to NASA and the world’s daily operations. Images are transmitted to NASA from satellites

and even Mars, making it very important to send data as efficiently as possible through the low-bandwidth links to these

locations. This project focuses its studies in three areas. First, a hands-on mathematical analysis of the singular value

decomposition (SVD) compression. Second, on the area of two field experiments that explore the effect of light conditions, shot

composition and content, as well as the time of day and other variables on the file sizes of images generated in a digital camera

that implements JPEG compression. Third, is about an in-depth study of the JPEG algorithm. In the SVD study, the team

analyzed mathematically how matrices are manipulated to return to its equivalent original matrix and the theory about SVD is

reinforced by using the software Wolfram Mathematica to compress images from NASA satellites and Mars rover. Mathematica

analyzed the file size and timing data for the compression process. In the field experiment, a camera with fixed focus, aperture,

and other shooting parameters was used to take pictures at various times of day of the same scene to see how the amount and

quality of daylight influenced JPEG’s ability to compress images. The same camera with the parameters still fixed was used to

shoot various locations, indoors and outdoors, at the same time of day to see how the content of the photo influenced JPEG file

sizes. Finally, the team looked at JPEG’s compression algorithm using Wolfram Mathematica to better understand its efficiency

and power, since NASA’s radiation-hardened computer processors are generally not powerful enough to compress images with

JPEG. Loosely, the team found that JPEG is best able to compress images with little variation pixel to pixel in color or

brightness, and that it provides better looking images at the same file size than SVD compression.

Keywords: Image Compression; compression ratio; Singular Value Decomposition (SVD); JPEG; Decompression; Huffman

Coding; Discrete Cosine Transform; quantization.

Introduction

This research project is in connection to computer

science and information theory. When something is

compressed, it simply means information is stored in fewer

bits than the original data. Compression can be classified in

two categories: lossless or lossy. Lossless compression is

when the data is compressed but the original information

remains intact. Lossy compression however, is when the

information is compressed but some data is lost along the

process. Compression is useful because it can save storage

space and also increases transmission capacity.

The team focuses on three areas of study namely: the

exploration and manipulation of the mathematical algorithm

of SVD and hands-on experiment of image compression using

SVD with the help of Wolfram Mathematica program; the

actual two field experiments using digital camera with fixed

settings to determine if there are changes in the files size of

the same image from 9 AM to 2:00 PM with 30 minutes

interval and to determine the files sizes of different images

done at fixed time of the day; and the analysis of the

mathematical algorithm and hands-on experiment of JPEG

compression using Wolfram Mathematica program.

SVD is applicable to image compression using the

principles and operation of matrices. The image can be

represented by a matrix of m by n size and can be

decomposed into three matrices. The result of the

multiplication of these matrices will reconstruct the original

image when all singular values in decreasing order are

utilized. In order to compress the image, the first few singular

values are sufficient to produce a reduced file size of an

image but still preserving the important elements of the said

image. The more detail procedure can be seen on (Cooper &

Lorenc, 2006). This principle of SVD compression using

Wolfram Mathematica program is significant for storing the

digital files and transmission of information to NASA and to

the unman robot from Mars.

Two field experiments have to be conducted to infer

whether the JPEG file size of an image has relation with time

and various locations both indoors and outdoors provided that

the settings of the digital camera are constant. The results of

these two field experiments will be analyzed and will be

illustrated through scatter plots and bar graphs.

The JPEG field experiments' outcomes will serve as a

motivation to further the study of JPEG compression.

Moreover, the team will examine the algorithm of JPEG

compression by transforming mathematically the given image

and apply Wolfram Mathematica to perform JPEG

compression. To learn more about the mathematica software,

please see (Purdue University) and (Wolfram Mathematica,

2013).

Importance of compression
Data is something very useful in the present stage.

Basically everybody has access to it, some however need it

more than others. Some can be threatened by the amount of

space needed and their available budget for it. Others are

threatened not only by the budget, but by available technology

and human patience. With this in mind many will rely on data

compression as a way to meet certain requirements and

affordable data handling.

Image/Video data compression is a very critical

technology for many operations in NASA (White). The goal

of NASA is not only to lower the data amount by

compressing it, because this will save money and save space.

They also want to improve the time it takes to access that data

as some people might need the data to be available right

away, or their real time science may demand it.

Journal of Student Research (2014) Volume 3, Issue 1: pp. 46-62

ISSN: 2167-1907 www.jofsr.com 47

In NASA, image compression is used for three main

reasons. First, compression saves space. NASA receives

millions of bits of data each day that require a huge storage

facility. NASA also has two or more backups for all the

information they have. By using compression, NASA saves

an enormous amount of hard drive space. Second,

image/video compression saves transmission time. For

example, the NASA Mars Rovers sends back pictures and

data which can take up to years to reach Earth if

uncompressed due to the massive distance between the two.

Distance also has a direct relationship with transmission rate,

for example Mars is 3.74x108 km away from Earth, as

opposed to the moon that is only 4.05x103 km. Lastly,

compression saves money by saving hard drive space and

time (Rahman Z.).

NASA identified various lunar/Mars mission

requirements that involve transmission of image/video, these

can be categorized into several types; high rate video, edited

high rate video, low rate video, science imaging data, and

telerobotics video.

Some of the image/video data mentioned before can

benefit greatly from compression because it would take up

less space and therefore can be transmitted faster. Other

image/video data such as scientific data and telerobotics

videos are very valuable and irreplaceable, so NASA is

reluctant to consider any type of compression on these

(Group).

Mathematics behind Singular Value Decomposition

(SVD): Here we will only summarize the known result.

Readers are encouraged to consult any introductory books on

linear algebra, for example, (Strang, 2009). A nice

chronological history of “Singular Value Decomposition” can

be found on (Stewart, 1993). SVD is based on a theorem from

linear algebra that says that a rectangular matrix, “A”, can be

decomposed into the product of three matrices.

Where:

 Am,n is a given matrix that represents an image

 Um,m is an orthogonal matrix wherein the columns of matrix U are the orthonormal eigenvectors of AAT

 Vn,n
T is the transpose of an orthogonal matrix V wherein the columns of matrix V are the orthonormal eigenvectors of ATA.

 Dm,n is a diagonal matrix wherein the diagonal elements are singular value, σi, equal to the square root of the eigenvalue

associated with the eigenvectors ui and vi in descending order. σ1 ≥ σ2 ≥ .… ≥ σn ≥ 0

Mathematica Lab experiment for SVD compression

In this experiment, the team used Wolfram Mathematica

to study the effects of SVD compression on an image. SVD

compression uses singular value decomposition of matrices to

reduce the amount of information stored in an image so that it

can be stored in much less space than the original image was.

In singular value decomposition, a matrix – call it A – is

decomposed into a series of coefficients multiplied by two

other matrices derived from A. These coefficients are that

matrix A’s singular values. The series of singular values is

arranged in decreasing order, so that the first singular values

contain more information about the original matrix A than the

later values.

This decomposition can be used to compress images.

Images are represented as matrices inside computers. Since

the first singular values contain more information than the

later ones, by taking only the first few singular values it is

possible to reduce the amount of information contained in an

image and compress that image (Image Compression, 2011).

In Mathematica, we took an image of Hyperion, a small moon

of Saturn, displayed below (Spacetelescope, 2013) and

(Space):

Figure 1: Hyperion image - a small moon of Saturn

We then used Mathematica to compress the image with SVD, varying the number of coefficients. A series of compressed

picture using increasing number of singular values are given below, where we specify the number of singular value coefficients.

Journal of Student Research (2014) Volume 3, Issue 1: pp. 46-62

ISSN: 2167-1907 www.jofsr.com 48

Readers are encouraged to study these pictures carefully and see the increasing quality of the picture as we increased the number

of singular values.

Figure 2: SVD with 10 coefficients

Figure 3: SVD with 20 coefficients

Figure 4: SVD with 30 coefficients

Figure 5: SVD with 40 coefficients

Figure 6: SVD with 50 coefficients

Figure 7: SVD with 60 coefficients

Journal of Student Research (2014) Volume 3, Issue 1: pp. 46-62

ISSN: 2167-1907 www.jofsr.com 49

Figure 8: SVD with 70 coefficients

Figure 9: SVD with 80 coefficients

Figure 10: SVD with 90 coefficients

Figure 11: SVD with 100 coefficients

SVD Compression Data and Conclusions

The team found a decreasing exponential trend in

compression ratio (original file size divided by the

compressed file size) as the number of singular values

increased. That trend makes sense because when all of the

singular values are used, the resulting matrix is identical to

the original matrix, and the resulting image is the same as the

original image. They should thus have the same file size. In

other word, as we take more singular values, we are

incorporating more information about the image and thus the

file size should increase. When we look at figure 14, we see

this very clearly. Although it is not very clear that why this

decreasing trend is exponential and not linear. A partial

explanation might be that the computation complexity of the

singular value decomposition is not in polynomial time and

thus we see an exponential decay rather than a linear decay.

Figure 12: SVD coefficients vs. compression ratio

There was no trend found in how long it took to

compress an image versus the number of coefficients used.

The team speculated that this could be caused by

Mathematica’s SVD algorithm, which might calculate every

singular value and then pick the ones requested. There might

be some other reason behind it including the CPU

performance of a specific computer, other task going on

Journal of Student Research (2014) Volume 3, Issue 1: pp. 46-62

ISSN: 2167-1907 www.jofsr.com 50

behind the scene (for example, virus scan), the strength of

internet connection on the specific place etc. Thus it is

difficult for the team to exactly pin point the reason of the

abnormality of the figure 15. The team plans to do a follow up

on this topic in the next summer.

Figure 13: SVD coefficients vs. time

The team concluded that SVD is very good at reducing

file sizes, but for very low file sizes (the compression ratio is

high), it often looks worse than JPEG compressed images. As

a compression algorithm, it is not often used for this reason.

Another reason for this algorithm not being implemented in

practice is the long time of computation.

Field Experiment

Objective: The objective for the two field experiments was to

discover what makes JPEG compression efficient.

Specifically, by shooting many pictures and isolating

variables like time of day and location, the team attempted to

see what kinds of lighting and shot composition yielded

photographs that JPEG was able to compress to a higher

degree.

Materials: digital camera with manual settings

Experiment 1: Time of Day vs. File Size

In Experiment 1, pictures were taken of one object from the

same angle and position and with the camera’s shooting

parameters (focal length, shutter speed, aperture, ISO, etc.) all

fixed. Pictures were taken every half hour and later imported

to a computer where their file sizes were plotted against time.

Through this procedure, a general trend was obtained for how

the quality of light produced by the time of day affected the

file size of the image after JPEG compression.

Figure 14: 9 AM image

Figure 16 was the first one taken, and the camera’s shooting

parameters were optimized for this level of light. Therefore,

the picture came out very clearly and with visible detail. The

file size was 4.4 megabytes.

Figure 15: noon time image

Since the shooting parameters were optimized during

lower light conditions, Figure 17 was washed out by the

bright noon sunlight. That element made the image less clear

and less detailed. The file size was 3.6 megabytes.

Observations for Experiment 1:

Figure 16: Time vs. image size

Figure 18 represent a graph of time versus file sizes.

There is somewhat of a general trend, with the highest file

sizes around 10 AM and the lowest file sizes around 1 PM.

All of the images were the same resolution (3000 by 4000

pixels for a total of 12 megapixels). Therefore, their raw

bitmap file sizes should have been the same, 12 megapixels

multiplied by three bytes per pixel (one byte for each of the

Journal of Student Research (2014) Volume 3, Issue 1: pp. 46-62

ISSN: 2167-1907 www.jofsr.com 51

red, green, and blue channels) or 36 megabytes. JPEG stayed

true to its advertised compression ration of about 10 to 1,

producing a range of file sizes all between 3.5 and 4.5

megabytes.

Looking at the data, the team concluded that the lower

file sizes around noon and 1 PM were produced by the

“washing out” effect caused by bright light conditions and

fixed camera parameters optimized for darker scenes. That

effect yielded less dynamic range and less detail in the

resulting images, which aligned neighboring pixel values

more closely and allowed JPEG to compress the image more

efficiently. JPEG was unable, however, to do much with the

shots around 9 and 10 AM, since the dynamic range was large

and neighboring pixel values often varied largely due to the

shadows in the leaves of the tree. Therefore, JPEG’s

algorithm was not very efficient as it relies on the similarity

of neighboring pixels.

Experiment 2: Location vs. File Size

Experiment 2 was similar in goal and procedure to

Experiment 1 except for a change in the independent variable.

Instead of fixing the location and angle and varying the time

of day, we varied the location and fixed the time of day. At

around 10:30 the team shot 23 photos in various conditions:

indoors and outdoors, dark and light, green and gray. The

photographs were imported to a computer where their file

sizes were analyzed qualitatively against the shot’s content.

Since the data was collected differently than that of

Experiment 1, there was no quantitative trend available for

analysis, but the team was able to make some observations by

comparing the pictures with the highest file sizes to the

pictures with lower file sizes.

Figure 17: Outdoor park image (same time of the day)

Figure 19 had the largest file size, 4.4 megabytes. Note

the dynamic range and varied bright and shadowy regions and

the overall clarity of the shot.

Figure 18: Outdoor street image (same time of the day)

Figure 20 comes in the middle of the pack, with a 2.6

megabyte file size. Note how washed out the sky and

sidewalk are and the presence of detail in the trees, buildings,

and cars.

Figure 19: Indoor image (same time of the day)

Figure 21 has a 2 megabyte file size, putting it near the

bottom of the group in file size. The obscurity of the shot cut

out a lot of the detail and made many of the pixels,

particularly in the lower right of the photograph, quite close to

each other in color and brightness.

Journal of Student Research (2014) Volume 3, Issue 1: pp. 46-62

ISSN: 2167-1907 www.jofsr.com 52

Figure 20: Outdoor sky image (same time of the day)

Figure 22 had the lowest file size, 1 megabyte. Since it is

a shot of the sky, all of the pixels have values that are quite

close to each other.

Observations for Experiment 2:

Figure 21: Image file sizes

Looking at the different images and making observations

similar to those above, a conclusion was drawn that

corroborated the conclusion from Experiment 1. Since the

images with the smallest file sizes had the least detail and

dynamic range, and since the images with the highest file size

tended to have more detail and range, it seemed again that

more detail made it more difficult to compress the image with

JPEG. More specifically, if the values of neighboring pixels

were not similar to each other, the algorithm was less

effective at compressing that pixel neighborhood.

So in conclusion, we can say that fewer variations in

color throughout an image will results higher compression

ratio and still retain the important features of the image. On

the other hand, the more details the picture is (with a lot of

color changes from pixels to pixels), JPEG takes more file

size to attain the compression ratio.

Experiment Using JPEG

Brief History of JPEG

In 1992, JPEG became an international standard for

compressing digital still images. The acronym JPEG comes

from the Joint Photographic Experts Group. JPEG was

formed in the 1980's by members from the International

Organization for Standardization (ISO) and the International

Telecommunications Union (ITU). Over 80% of all images

that are transmitted via the internet are stored using the JPEG

standard. Despite the popularity of the standard, JPEG

members quickly identified some issues with the format and

also compiled a list of enhancements that should be included

in the next generation of the format (Math is Fun).

In computing, JPEG is a commonly used method of lossy

compression for digital photography (image). The degree of

compression can be adjusted, allowing a selectable tradeoff

between storage size and image quality. JPEG typically

achieves 10:1 compression with little perceptible loss in

image quality.

JPEG compression is used in a number of image format.

JPEG/Exif is the most common image format used by digital

cameras and other photographic image capture devices; along

with JPEG/JFIF, it is the most common format for storing and

transmitting photographic images on the world wide web

(www).

JPEG can be used to compress a digital still image.

There are four basic steps in JPEG compression algorithm.

(Mathematics, 2011)

1. Preprocessing

2. Transformation

3. Quantization

4. Encoding

How JPEG works?

o JPEG Compression breaks an image into a series of

square patches of pixels or in other words 8x8

blocks.Then you substract 127 from each pixel intensity

in each block. (Preprocessing)

o A two dimensional Discrete Fourier Cosine Transform is

applied to each patch. (transformation)

o Transform coefficients that are very small in magnitude

will have very little affect on the image and are,

therefore, set to zero. (Quantization)

o The coefficients are then reduced in size by applying a

compression algorithm. This compression algorithm is

Hoffman Coding. (Encoding)

o When restoring the image, the image file is

decompressed and each patch is sent through an inverse

Discrete Fourier Cosine Transform. (Inverse Process)

http://en.wikipedia.org/wiki/Computing

Journal of Student Research (2014) Volume 3, Issue 1: pp. 46-62

ISSN: 2167-1907 www.jofsr.com 53

Figure 22: Block diagram of JPEG compression algorithm

Figure 23: JPEG Compression-Decompression Algorithm

The following block diagrams will be explain in detail using Wolfram Mathematica. Example 1 (The detail explanation on

the JPEG compression on the happy face) JPEG compression Algorithm of an artificial image “smiley face” using Wolfram

Mathematica Program. As we proceed with the description, all the necessary commands of mathematica are also given in the

appropriate places. The following image (black and white only using 0 and 1) is created using "Image" command. The size is 16

by 16.

Journal of Student Research (2014) Volume 3, Issue 1: pp. 46-62

ISSN: 2167-1907 www.jofsr.com 54

a = Image[{{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},

{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},

{1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1},

{1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1},

{1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1},

{1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1},

{1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1},

{1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1},

{1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1},

{1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1},

{1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1},

{1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1},

{1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1},

{1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1},

{1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1},

{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}}]

Let us convert this image to a matrix - this will be a 16 by 16 matrix whose entries are 0 and 1

b = ImageData[a];

ImageData[a] // MatrixForm

Preprocessing:

First we need to convert all the entry between 0 and 255. This is accomplished by using the "Byte" command. Recall that

there are two scale of color - one is given by value between 0 and 1 and the other is given by value between 0 and 255 (this one

only use integer).

c = ImageData[a, "Byte"];

ImageData[a, "Byte"] // MatrixForm

Figure 24: Artificial "smiley" image

Journal of Student Research (2014) Volume 3, Issue 1: pp. 46-62

ISSN: 2167-1907 www.jofsr.com 55

Now we need to make the data symmetric around origin - this is done by subtracting 127 from each entry of the matrix. After this

all entry of the matrix will be between -128 and 128.

u[x_] := x - 127;

d = Map[u, c];

Map[u, c] // MatrixForm

Finally we need to partition the matrix into 8 by 8 submatrix. In this case, since the matrix is 16 by 16, we will get 4 pieces of 8

by 8 submatrix. If the dimension of the matrix is not divisible by 8, then we "pat" the matrix at the end - this means add minimum

number of 0 so that the dimension will be divisible by 8. To partition a matrix, we use "Partition" command.

{e, f} = Partition[d, {8, 8}];

Partition[d, {8, 8}] // MatrixForm

To separate these four submatrix, we use four different name for four submatrix.

e1 = e[[1]];

e2 = e[[2]];

f1 = f[[1]];

f2 = f[[2]];

e[[1]] // MatrixForm

e[[2]] // MatrixForm

f[[1]] // MatrixForm

f[[2]] // MatrixForm

Journal of Student Research (2014) Volume 3, Issue 1: pp. 46-62

ISSN: 2167-1907 www.jofsr.com 56

Transformation:

First consider the submatrix e1 (the upper left hand corner). The process is exactly same for all four so we will just explain

one in detail. This e1 is an 8 by 8 matrix. The transformation is to multiply the e1 as follows: U times e1 times U transpose where

U is the 8 by 8 DCT matrix. This U will be an orthogonal matrix. This is a fixed matrix. There is only one 8 by 8 DCT matrix

(although a few variation exist the one below is the most common one). Instead of U, we name it U8:

g[k_] := Piecewise[{{1, k < 0}, {1, k > 0}}, 1/Sqrt[2]];

m = 8;

U8 = Table[(4/m)*g[k] Cos[((2*n + 1)*k*Pi)/(2*m)], {k, 0, m - 1}, {n, 0, m - 1}];

V8 = Table[(4/m)*g[k] Cos[((2*n + 1)*k*Pi)/(2*m)], {k, 0, m - 1}, {n, 0, m - 1}] // MatrixForm

We multiply e1 with the above DCT matrix as described before:

T1 = N[U8.e1.Transpose[U8]];

N[U8.e1.Transpose[U8] // MatrixForm]

Journal of Student Research (2014) Volume 3, Issue 1: pp. 46-62

ISSN: 2167-1907 www.jofsr.com 57

This is the end of the transformation of e1. We do the same for e2, f1 and f2. We do not display all the output. The transformation

of e1, e2, f1, f2 are denoted by T1, T2, T3 and T4.

T2 = N[U8.e2.Transpose[U8]];

T3 = N[U8.f1.Transpose[U8]];

T4 = N[U8.f2.Transpose[U8]];

Quantization:

First consider T1 (the other are similar). The main idea is to ignore the lowest value. But how can we decide which one is

lower and which one is not? This is why there is a fixed 8 by 8 luminance matrix (we call this Z in here) - you may call it a

quantization matrix. This matrix is given below:

Z = {{16, 11, 10, 16, 24, 40, 51, 61}, {12, 12, 14, 19, 26, 58, 60, 55}, {14, 13, 16, 24, 40, 57, 69, 56}, {14, 17, 22, 29, 51, 87, 80,

62}, {18, 22, 37, 56, 68, 109, 103, 77}, {24, 35, 55, 64, 81, 104, 113, 92}, {49, 64, 78, 87, 103, 121, 120, 101}, {72, 92, 95, 98,

112, 100, 103, 99}};

Z // MatrixForm

The quantization matrix is designed to provide more resolution to more perceivable frequency components over less

perceivable components (usually lower frequencies over high frequencies) in addition to transforming as many components to 0,

which can be encoded with greatest efficiency.

Each element of T1 is divided by the corresponding element of Z and round to the nearest integer. This is the quantization

process. The quantization of T1 is denoted by qT1, the quantization of T2 is denoted by qT2 etc.

qT1 = Table[Round[T1[[s]][[t]]/Z[[s]][[t]]], {s, 1, 8}, {t, 1, 8}];

qT1 // MatrixForm

Journal of Student Research (2014) Volume 3, Issue 1: pp. 46-62

ISSN: 2167-1907 www.jofsr.com 58

qT2 = Table[Round[T2[[s]][[t]]/Z[[s]][[t]]], {s, 1, 8}, {t, 1, 8}];

qT2 // MatrixForm

qT3 = Table[Round[T3[[s]][[t]]/Z[[s]][[t]]], {s, 1, 8}, {t, 1, 8}];

qT3 // MatrixForm

qT4 = Table[Round[T4[[s]][[t]]/Z[[s]][[t]]], {s, 1, 8}, {t, 1, 8}];

qT4 // MatrixForm

Coding:

Now Huffman Coding is applied. Huffman coding is a lossless compression algorithm that eliminates redundant data.

Inverting the process:

This is NOT a true inversion because some steps for example the quantization are not invertible process. But we will get an

approximation of the original image. The process is simple. Consider qT1 (quantization of T1): We will multiply each entry of

qT1 by the corresponding entry of Z - we will call this matrix reverseqT1: This will be an approximation of T1.

reverseqT1 = Table[qT1[[s]][[t]]*Z[[s]][[t]], {s, 1, 8}, {t, 1, 8}];

reverseqT1 // MatrixForm

Journal of Student Research (2014) Volume 3, Issue 1: pp. 46-62

ISSN: 2167-1907 www.jofsr.com 59

Now multiply this above matrix on the left by U8 transpose and on the right by U8 - this will reverse the process of

transformation. Of course, we round everything to nearest integer. This will be an approximation of e1. So we call it reverseT1.

reverseT1 = Map[Round, N[Transpose[U8].reverseqT1.U8]];

reverseT1 // MatrixForm

Finally we add 127 to each entry to make the value 0 and 255 (if the entry is below 0 or above 255, it is assumed the value 0 and

255 respectively). We call it j1.

p[x_] := x + 127;

j1 = Map[p, reverseT1];

j1 // MatrixForm

Do the same for other but not show the output:

reverseqT2 = Table[qT2[[s]][[t]]*Z[[s]][[t]], {s, 1, 8}, {t, 1, 8}];

reverseT2 = Map[Round, N[Transpose[U8].reverseqT2.U8]];

j2 = Map[p, reverseT2];

j2 // MatrixForm

reverseqT3 = Table[qT3[[s]][[t]]*Z[[s]][[t]], {s, 1, 8}, {t, 1, 8}];

reverseT3 = Map[Round, N[Transpose[U8].reverseqT3.U8]];

j3 = Map[p, reverseT3];

j3 // MatrixForm

reverseqT4 = Table[qT4[[s]][[t]]*Z[[s]][[t]], {s, 1, 8}, {t, 1, 8}];

Journal of Student Research (2014) Volume 3, Issue 1: pp. 46-62

ISSN: 2167-1907 www.jofsr.com 60

reverseT4 = Map[Round, N[Transpose[U8].reverseqT4.U8]];

j4 = Map[p, reverseT4];

j4 // MatrixForm

Put all j1, j2, j3 and j4 into a big matrix and create the image:

j = Join[Join[j1, j2, 2], Join[j3, j4, 2]];

Join[Join[j1, j2, 2], Join[j3, j4, 2]] // MatrixForm

Image[j, "Byte"] [Finally This will create the JPEG compressed Image of the smiley face. Since the image is artificially created

with only the value of 0 and 1, we see that the compressed image has a lot of noise around the 8 by 8 blocks. But in the everyday

image, the nearby pixels have approximately equal value and thus in the compressed image the noise is minimum and very hard

to recognized it through naked eye.]

Figure 25: JPEG Compressed "smiley" image

Advantages of JPEG compression:

 Most common file used across the Web

(80%).

 It can make image files smaller.

 Editing is not required to print a file in

JPEG

 JPEG files can be processed in your

camera.

Disadvantages of JPEG compression:

 Compression discards some data.

 Compression compromises image quality.

 JPEG does not handle line drawings well

and it does not support animation.

 Compression is applied every time you

save an image using JPEG.

Conclusion

This research project, which focused on three parts

mentioned above, concluded that JPEG was more functional

to compress images with little variation pixel to pixel in color

or brightness. JPEG further generated better images at the

same file size than SVD compression.

In doing SVD compression using Wolfram Mathematica

program as shown in Figures 3 to 13, it was concluded that

the relation between compression ratio and the singular values

(SVD coefficients) was a decreasing exponential function as

shown in figure 14. Also, there was no relation found in how

long it took to compress an image versus the number of

coefficients used as shown in figure 15.

In the SVD compression experiment, the team concluded

based on Mathematica’s timing data that there was no trend in

compression time versus the number of SVD coefficients

taken. The team speculated that this could be due to the fact

that Mathematica calculates every singular value and then

selects the required values, as well as due to random

fluctuations in computer activity. The team also found that the

fewer singular values were used, the smaller the resulting file

size was. Moreover, incrementing the number of coefficients

caused a greater increase in file size when the number of

coefficients was small versus when it was large. As the

Journal of Student Research (2014) Volume 3, Issue 1: pp. 46-62

ISSN: 2167-1907 www.jofsr.com 61

number of coefficients increased, the compression ratio

approached one.

That Singular Value Decomposition (SVD) is an

important topic in linear Algebra where students will put

strong emphasis on exploring the application of image

compression. This research project will encourage high school

students to appreciate math by looking at the algorithm of

SVD compression with the use of the properties and operation

of matrices. SVD compression can be an elective math for

senior students and will serve as one of the culminating

activity. Students can compare and contrast how SVD can

reconstruct the original image and how the Mathematica

program can perform image compression. Students can select

different kinds of images and apply Mathematica program in

order to compress the image and measure the compression

ratio.

Field experiment 1 (a graph of time versus file sizes) as

shown in figure 18, revealed that there was apparently a

general trend, with the highest file sizes around 10 AM and

the lowest file sizes around 1 PM. Furthermore, the more

detail was the image, the bigger was the file size.

Field experiment 2 (a graph of different images taken at the

same time of the day) as shown in figure 23, brought a point

that the images with the smallest file sizes had the least detail

and the images with the highest file size seemed to have more

detail.

The JPEG field experiments showed that JPEG is much

better at compressing scenes that have little variation in light

and tone. The image that was best compressed was an image

of a uniformly blue sky, whereas JPEG had great difficulty

compressing an image with dappled shadows and lots of

colors. The experiment also showed that exposing an image

with too much light, leading to a ‘washed out’ quality, could

lead to smaller file sizes since some detail is eliminated.

The theoretical JPEG hands on experiment showed the

problems with basic JPEG compression. There are lots of

noise around the borders of the 8 x 8 blocks that the algorithm

splits the image into, and there are obvious compression

artifacts around edges, particularly in images of text or line

drawings.

The team discovered that JPEG is more functional to

compress images with little variation pixel to pixel in color or

brightness. JPEG further generated better images at the same

file size than SVD compression.

For future work, it may consider studying other compression

programs and their algorithm used by NASA such as wavelet-

based image compression like JPEG2000 and ICER.

Acknowledgement and Sponsors:

A special thank goes to Prof. Angulo Nieves of Hostos

Community College for her grant to support the research. We

also want to thank all of our other sponsors which include the

following: New York City Research Initiative, The City

University of New York, The City College of New York,

Hostos Community College, United States Department of

Education, Goddard Institute for Space Studies, Goddard

Space Flight Center, NASA, NSF and NOAA.

This project is supported by the grant from U.S. DoE -

CILES #P031C110158. This paper is presented in the

research summit on Aug 1st, 2013 in the City College of New

York.

References

Center, N. A. (n.d.). Perceptual Optimization of Wavelet

Image Compression. (n.d.). Department of Electrical

Engineering, UCLA.

College, H. M. (n.d.). Change of Basis. Retrieved from Math

Totorial Website:

http://www.math.hmc.edu/calculus/tutorials/changebasis/ch

angebasis.pdf

Cooper, I., & Lorenc, C. (2006). Image Compression Using

Singular Value Decomposition. Retrieved from Retrieved

from College of the Redwoods:

http://msemac.redwoods.edu/~darnold/math45/laproj/fall20

06/iancraig/SVD_paper.pdf

Group, S. (n.d.). JPEG Compression: What it is - when to use

it - and when not to. Retrieved from Retrieved from the

university of Oslo website:

http://folk.uio.no/inf9540/SVD.pdf

Image Compression. (2011). Image Compression: How Math

Led to the JPEG2000 Standard. Retrieved from Image

Compression: How Math Led to the JPEG2000 Standard.

(2011).

Retriwww.whydomath.org/node/wavlets/basicjpg.html

Math is Fun. (n.d.). Retrieved from

http://www.mathsisfun.com/divisibility-rules.html

Mathematics, S. f. (2011). Why Do Math? Retrieved from

Image Compression: How Math Led to the JPEG2000

Standard:

http://www.whydomath.org/node/wavlets/basicjpg.html

Purdue University. (n.d.). A Brief Introduction to

Mathematica. Retrieved from

http://www.cs.purdue.edu/homes/ayg/CS590C/www/mathe

matica/math.html

Rahman Z., J. D. (n.d.). Image enhancement, image quality,

and noise, Photonic Devices and Algorithms for

Computing., (pp. VII, Proc. SPIE 5907).

Space, N. A. (n.d.). National Aeronautics and Space

Administration. Retrieved from National Aeronautics and

Space Administration: www.nasa.gov

Spacetelescope. (2013). Spacetelescope.org. Retrieved from

Spacetelescope.org:

https://www.spacetelescope.org/projects/fits_liberator/impr

oc/

Stewart, G. W. (1993). On The Early History of the Singular

Value Decomposition.

Strang, G. (2009). Introduction to Linear Algebra (4th ed.).

Wellesley-Cambridge Press.

White, W. A. (n.d.). Data Compression for Full Motion Video

Transmission. Conference on Advanced Space Exploration

Initiative Technologies, (pp. 1-11).

Wolfram Mathematica. (2013). Hands-on Start to

Mathematica. Retrieved from Wolfram:

http://www.wolfram.com/broadcast/screencasts/handsonsta

rt/

