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Image compression is fundamental to NASA and the world’s daily operations. Images are transmitted to NASA from satellites 

and even Mars, making it very important to send data as efficiently as possible through the low-bandwidth links to these 

locations. This project focuses its studies in three areas. First, a hands-on mathematical analysis of the singular value 

decomposition (SVD) compression.  Second, on the area of two field experiments that explore the effect of light conditions, shot 

composition and content, as well as the time of day and other variables on the file sizes of images generated in a digital camera 

that implements JPEG compression.  Third, is about an in-depth study of the JPEG algorithm. In the SVD study, the team 

analyzed mathematically how matrices are manipulated to return to its equivalent original matrix and the theory about SVD is 

reinforced by using the software Wolfram Mathematica to compress images from NASA satellites and Mars rover.  Mathematica 

analyzed the file size and timing data for the compression process. In the field experiment, a camera with fixed focus, aperture, 

and other shooting parameters was used to take pictures at various times of day of the same scene to see how the amount and 

quality of daylight influenced JPEG’s ability to compress images. The same camera with the parameters still fixed was used to 

shoot various locations, indoors and outdoors, at the same time of day to see how the content of the photo influenced JPEG file 

sizes. Finally, the team looked at JPEG’s compression algorithm using Wolfram Mathematica to better understand its efficiency 

and power, since NASA’s radiation-hardened computer processors are generally not powerful enough to compress images with 

JPEG. Loosely, the team found that JPEG is best able to compress images with little variation pixel to pixel in color or 

brightness, and that it provides better looking images at the same file size than SVD compression. 
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Introduction 
 

This research project is in connection to computer 

science and information theory.  When something is 

compressed, it simply means information is stored in fewer 

bits than the original data. Compression can be classified in 

two categories: lossless or lossy. Lossless compression is 

when the data is compressed but the original information 

remains intact. Lossy compression however, is when the 

information is compressed but some data is lost along the 

process. Compression is useful because it can save storage 

space and also increases transmission capacity. 

The team focuses on three areas of study namely: the 

exploration and manipulation of the mathematical algorithm 

of SVD and hands-on experiment of image compression using 

SVD with the help of Wolfram Mathematica program; the 

actual two field experiments using digital camera with fixed 

settings to determine if there are changes in the files size of 

the same image from 9 AM to 2:00 PM with 30 minutes 

interval and to determine the files sizes of different images 

done at fixed time of the day; and the analysis of the 

mathematical algorithm and hands-on experiment of JPEG 

compression using Wolfram Mathematica program. 

SVD is applicable to image compression using the 

principles and operation of matrices.  The image can be 

represented by a matrix of m by n size and can be 

decomposed into three matrices. The result of the 

multiplication of these matrices will reconstruct the original 

image when all singular values in decreasing order are 

utilized.  In order to compress the image, the first few singular 

values are sufficient to produce a reduced file size of an 

image but still preserving the important elements of the said 

image. The more detail procedure can be seen on (Cooper & 

Lorenc, 2006). This principle of SVD compression using 

Wolfram Mathematica program is significant for storing the 

digital files and transmission of information to NASA and to 

the unman robot from Mars.  

Two field experiments have to be conducted to infer 

whether the JPEG file size of an image has relation with time 

and various locations both indoors and outdoors provided that 

the settings of the digital camera are constant. The results of 

these two field experiments will be analyzed and will be 

illustrated through scatter plots and bar graphs.  

The JPEG field experiments' outcomes will serve as a 

motivation to further the study of JPEG compression.  

Moreover, the team will examine the algorithm of JPEG 

compression by transforming mathematically the given image 

and apply Wolfram Mathematica to perform JPEG 

compression. To learn more about the mathematica software, 

please see (Purdue University) and (Wolfram Mathematica, 

2013).  

 

Importance of compression 
Data is something very useful in the present stage. 

Basically everybody has access to it, some however need it 

more than others. Some can be threatened by the amount of 

space needed and their available budget for it. Others are 

threatened not only by the budget, but by available technology 

and human patience. With this in mind many will rely on data 

compression as a way to meet certain requirements and 

affordable data handling. 

Image/Video data compression is a very critical 

technology for many operations in NASA (White). The goal 

of NASA is not only to lower the data amount by 

compressing it, because this will save money and save space. 

They also want to improve the time it takes to access that data 

as some people might need the data to be available right 

away, or their real time science may demand it.  
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In NASA, image compression is used for three main 

reasons. First, compression saves space. NASA receives 

millions of bits of data each day that require a huge storage 

facility. NASA also has two or more backups for all the 

information they have. By using compression, NASA saves 

an enormous amount of hard drive space.  Second, 

image/video compression saves transmission time. For 

example, the NASA Mars Rovers sends back pictures and 

data which can take up to years to reach Earth if 

uncompressed due to the massive distance between the two.  

Distance also has a direct relationship with transmission rate, 

for example Mars is 3.74x108 km away from Earth, as 

opposed to the moon that is only 4.05x103 km.  Lastly, 

compression saves money by saving hard drive space and 

time (Rahman Z.).  

NASA identified various lunar/Mars mission 

requirements that involve transmission of image/video, these 

can be categorized into several types; high rate video, edited 

high rate video, low rate video, science imaging data, and 

telerobotics video. 

Some of the image/video data mentioned before can 

benefit greatly from compression because it would take up 

less space and therefore can be transmitted faster. Other 

image/video data such as scientific data and telerobotics 

videos are very valuable and irreplaceable, so NASA is 

reluctant to consider any type of compression on these 

(Group).  

 

Mathematics behind Singular Value Decomposition 

(SVD): Here we will only summarize the known result. 

Readers are encouraged to consult any introductory books on 

linear algebra, for example, (Strang, 2009). A nice 

chronological history of “Singular Value Decomposition” can 

be found on (Stewart, 1993). SVD is based on a theorem from 

linear algebra that says that a rectangular matrix, “A”, can be 

decomposed into the product of three matrices.  

 

 
Where: 

 Am,n is a given matrix that represents an image 

 Um,m is an orthogonal matrix wherein the columns of matrix U are the orthonormal eigenvectors of AAT 

 Vn,n
T is the transpose of an orthogonal matrix V wherein the columns of matrix V are the orthonormal eigenvectors of ATA. 

 Dm,n is a diagonal matrix wherein the diagonal elements are singular value, σi, equal to the square root of the eigenvalue 

associated with the eigenvectors ui and vi in descending order. σ1 ≥ σ2 ≥ .… ≥ σn ≥ 0 

 

Mathematica Lab experiment for SVD compression 

In this experiment, the team used Wolfram Mathematica 

to study the effects of SVD compression on an image. SVD 

compression uses singular value decomposition of matrices to 

reduce the amount of information stored in an image so that it 

can be stored in much less space than the original image was. 

In singular value decomposition, a matrix – call it A – is 

decomposed into a series of coefficients multiplied by two 

other matrices derived from A. These coefficients are that 

matrix A’s singular values. The series of singular values is 

arranged in decreasing order, so that the first singular values 

contain more information about the original matrix A than the 

later values. 

This decomposition can be used to compress images. 

Images are represented as matrices inside computers. Since 

the first singular values contain more information than the 

later ones, by taking only the first few singular values it is 

possible to reduce the amount of information contained in an 

image and compress that image (Image Compression, 2011).  

In Mathematica, we took an image of Hyperion, a small moon 

of Saturn, displayed below (Spacetelescope, 2013) and 

(Space):  

 

 
Figure 1: Hyperion image - a small moon of Saturn 

 

We then used Mathematica to compress the image with SVD, varying the number of coefficients. A series of compressed 

picture using increasing number of singular values are given below, where we specify the number of singular value coefficients. 
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Readers are encouraged to study these pictures carefully and see the increasing quality of the picture as we increased the number 

of singular values. 

 
Figure 2:  SVD with 10 coefficients 

 

 
Figure 3:  SVD with 20 coefficients 

 

 
Figure 4:  SVD with 30 coefficients 

 
Figure 5:  SVD with 40 coefficients 

 

 
Figure 6:  SVD with 50 coefficients 

 

 
Figure 7:  SVD with 60 coefficients 
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Figure 8:  SVD with 70 coefficients 

 

 
Figure 9:  SVD with 80 coefficients 

 
Figure 10:  SVD with 90 coefficients 

 

 
Figure 11:  SVD with 100 coefficients 

 

  

SVD Compression Data and Conclusions 

 

The team found a decreasing exponential trend in 

compression ratio (original file size divided by the 

compressed file size) as the number of singular values 

increased. That trend makes sense because when all of the 

singular values are used, the resulting matrix is identical to 

the original matrix, and the resulting image is the same as the 

original image. They should thus have the same file size. In 

other word, as we take more singular values, we are 

incorporating more information about the image and thus the 

file size should increase. When we look at figure 14, we see 

this very clearly. Although it is not very clear that why this 

decreasing trend is exponential and not linear. A partial 

explanation might be that the computation complexity of the 

singular value decomposition is not in polynomial time and 

thus we see an exponential decay rather than a linear decay.  

 
Figure 12:  SVD coefficients vs. compression ratio 

 

There was no trend found in how long it took to 

compress an image versus the number of coefficients used. 

The team speculated that this could be caused by 

Mathematica’s SVD algorithm, which might calculate every 

singular value and then pick the ones requested. There might 

be some other reason behind it including the CPU 

performance of a specific computer, other task going on 
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behind the scene (for example, virus scan), the strength of 

internet connection on the specific place etc. Thus it is 

difficult for the team to exactly pin point the reason of the 

abnormality of the figure 15. The team plans to do a follow up 

on this topic in the next summer. 

 

 
Figure 13:  SVD coefficients vs. time 

 

The team concluded that SVD is very good at reducing 

file sizes, but for very low file sizes (the compression ratio is 

high), it often looks worse than JPEG compressed images. As 

a compression algorithm, it is not often used for this reason. 

Another reason for this algorithm not being implemented in 

practice is the long time of computation.  

 

Field Experiment 

 

Objective: The objective for the two field experiments was to 

discover what makes JPEG compression efficient. 

Specifically, by shooting many pictures and isolating 

variables like time of day and location, the team attempted to 

see what kinds of lighting and shot composition yielded 

photographs that JPEG was able to compress to a higher 

degree. 

Materials: digital camera with manual settings 

Experiment 1: Time of Day vs. File Size 

In Experiment 1, pictures were taken of one object from the 

same angle and position and with the camera’s shooting 

parameters (focal length, shutter speed, aperture, ISO, etc.) all 

fixed. Pictures were taken every half hour and later imported 

to a computer where their file sizes were plotted against time. 

Through this procedure, a general trend was obtained for how 

the quality of light produced by the time of day affected the 

file size of the image after JPEG compression. 

 

 
Figure 14:  9 AM image 

Figure 16 was the first one taken, and the camera’s shooting 

parameters were optimized for this level of light. Therefore, 

the picture came out very clearly and with visible detail. The 

file size was 4.4 megabytes. 

 

 
Figure 15:  noon time image 

 

Since the shooting parameters were optimized during 

lower light conditions, Figure 17 was washed out by the 

bright noon sunlight. That element made the image less clear 

and less detailed. The file size was 3.6 megabytes. 

 

Observations for Experiment 1: 

 

 
Figure 16: Time vs. image size 

 

Figure 18 represent a graph of time versus file sizes. 

There is somewhat of a general trend, with the highest file 

sizes around 10 AM and the lowest file sizes around 1 PM. 

All of the images were the same resolution (3000 by 4000 

pixels for a total of 12 megapixels). Therefore, their raw 

bitmap file sizes should have been the same, 12 megapixels 

multiplied by three bytes per pixel (one byte for each of the 
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red, green, and blue channels) or 36 megabytes. JPEG stayed 

true to its advertised compression ration of about 10 to 1, 

producing a range of file sizes all between 3.5 and 4.5 

megabytes. 

Looking at the data, the team concluded that the lower 

file sizes around noon and 1 PM were produced by the 

“washing out” effect caused by bright light conditions and 

fixed camera parameters optimized for darker scenes. That 

effect yielded less dynamic range and less detail in the 

resulting images, which aligned neighboring pixel values 

more closely and allowed JPEG to compress the image more 

efficiently. JPEG was unable, however, to do much with the 

shots around 9 and 10 AM, since the dynamic range was large 

and neighboring pixel values often varied largely due to the 

shadows in the leaves of the tree. Therefore, JPEG’s 

algorithm was not very efficient as it relies on the similarity 

of neighboring pixels. 

 

Experiment 2: Location vs. File Size 

Experiment 2 was similar in goal and procedure to 

Experiment 1 except for a change in the independent variable. 

Instead of fixing the location and angle and varying the time 

of day, we varied the location and fixed the time of day. At 

around 10:30 the team shot 23 photos in various conditions: 

indoors and outdoors, dark and light, green and gray. The 

photographs were imported to a computer where their file 

sizes were analyzed qualitatively against the shot’s content. 

Since the data was collected differently than that of 

Experiment 1, there was no quantitative trend available for 

analysis, but the team was able to make some observations by 

comparing the pictures with the highest file sizes to the 

pictures with lower file sizes. 

 

 
Figure 17:  Outdoor park image (same time of the day) 

 

Figure 19 had the largest file size, 4.4 megabytes. Note 

the dynamic range and varied bright and shadowy regions and 

the overall clarity of the shot. 

 
Figure 18:  Outdoor street image (same time of the day) 

 

Figure 20 comes in the middle of the pack, with a 2.6 

megabyte file size. Note how washed out the sky and 

sidewalk are and the presence of detail in the trees, buildings, 

and cars. 

 

 
Figure 19:  Indoor image (same time of the day) 

 

Figure 21 has a 2 megabyte file size, putting it near the 

bottom of the group in file size. The obscurity of the shot cut 

out a lot of the detail and made many of the pixels, 

particularly in the lower right of the photograph, quite close to 

each other in color and brightness. 
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Figure 20:  Outdoor sky image (same time of the day) 

 

Figure 22 had the lowest file size, 1 megabyte. Since it is 

a shot of the sky, all of the pixels have values that are quite 

close to each other. 

 

Observations for Experiment 2: 

 

 
Figure 21:  Image file sizes 

 

Looking at the different images and making observations 

similar to those above, a conclusion was drawn that 

corroborated the conclusion from Experiment 1. Since the 

images with the smallest file sizes had the least detail and 

dynamic range, and since the images with the highest file size 

tended to have more detail and range, it seemed again that 

more detail made it more difficult to compress the image with 

JPEG. More specifically, if the values of neighboring pixels 

were not similar to each other, the algorithm was less 

effective at compressing that pixel neighborhood. 

So in conclusion, we can say that fewer variations in 

color throughout an image will results higher compression 

ratio and still retain the important features of the image. On 

the other hand, the more details the picture is (with a lot of 

color changes from pixels to pixels), JPEG takes more file 

size to attain the compression ratio.  

 

Experiment Using JPEG 

 

Brief History of JPEG 

In 1992, JPEG became an international standard for 

compressing digital still images.  The acronym JPEG comes 

from the Joint Photographic Experts Group.  JPEG was 

formed in the 1980's by members from the International 

Organization for Standardization (ISO) and the International 

Telecommunications Union (ITU).  Over 80% of all images 

that are transmitted via the internet are stored using the JPEG 

standard.  Despite the popularity of the standard, JPEG 

members quickly identified some issues with the format and 

also compiled a list of enhancements that should be included 

in the next generation of the format (Math is Fun).  

In computing, JPEG is a commonly used method of lossy 

compression for digital photography (image). The degree of 

compression can be adjusted, allowing a selectable tradeoff 

between storage size and image quality. JPEG typically 

achieves 10:1 compression with little perceptible loss in 

image quality. 

JPEG compression is used in a number of image format.  

JPEG/Exif is the most common image format used by digital 

cameras and other photographic image capture devices; along 

with JPEG/JFIF, it is the most common format for storing and 

transmitting photographic images on the world wide web 

(www). 

JPEG can be used to compress a digital still image. 

There are four basic steps in JPEG compression algorithm. 

(Mathematics, 2011) 

1. Preprocessing   

2. Transformation  

3. Quantization  

4. Encoding 

 

How JPEG works? 

o JPEG Compression breaks an image into a series of 

square patches of pixels or in other words 8x8 

blocks.Then you substract 127 from each pixel intensity 

in each block. (Preprocessing) 

o A two dimensional Discrete Fourier Cosine Transform is 

applied to each patch. (transformation) 

o Transform coefficients that are very small in magnitude 

will have very little affect on the image and are, 

therefore, set to zero. (Quantization) 

o The coefficients are then reduced in size by applying a 

compression algorithm. This compression algorithm is 

Hoffman Coding. (Encoding) 

o When restoring the image, the image file is 

decompressed and each patch is sent through an inverse 

Discrete Fourier Cosine Transform. (Inverse Process) 

http://en.wikipedia.org/wiki/Computing
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Figure 22:  Block diagram of JPEG compression algorithm 

 

 
Figure 23:  JPEG Compression-Decompression Algorithm 

 

The following block diagrams will be explain in detail using Wolfram Mathematica. Example 1 (The detail explanation on 

the JPEG compression on the happy face) JPEG compression Algorithm of an artificial image “smiley face” using Wolfram 

Mathematica Program. As we proceed with the description, all the necessary commands of mathematica are also given in the 

appropriate places. The following image (black and white only using 0 and 1) is created using "Image" command. The size is 16 

by 16. 
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a = Image[{{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},  

{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},  

{1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1},  

{1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1},  

{1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1},  

{1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1},  

{1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1},  

{1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1},  

{1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1},  

{1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1},  

{1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1},  

{1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1},  

{1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1},  

{1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1},  

{1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1},  

{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}}] 

 

Let us convert this image to a matrix - this will be a 16 by 16 matrix whose entries are 0 and 1 

b = ImageData[a]; 

ImageData[a] // MatrixForm 

 
Preprocessing: 

First we need to convert all the entry between 0 and 255. This is accomplished by using the "Byte" command. Recall that 

there are two scale of color - one is given by value between 0 and 1 and the other is given by value between 0 and 255 (this one 

only use integer). 

c = ImageData[a, "Byte"]; 

ImageData[a, "Byte"] // MatrixForm 

 

Figure 24:  Artificial "smiley" image 
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Now we need to make the data symmetric around origin - this is done by subtracting 127 from each entry of the matrix. After this 

all entry of the matrix will be between -128 and 128. 

u[x_] := x - 127; 

d = Map[u, c]; 

Map[u, c] // MatrixForm 

 
Finally we need to partition the matrix into 8 by 8 submatrix. In this case, since the matrix is 16 by 16, we will get 4 pieces of 8 

by 8 submatrix. If the dimension of the matrix is not divisible by 8, then we "pat" the matrix at the end - this means add minimum 

number of 0 so that the dimension will be divisible by 8. To partition a matrix, we use "Partition" command. 

{e, f} = Partition[d, {8, 8}]; 

Partition[d, {8, 8}] // MatrixForm 

 
To separate these four submatrix, we use four different name for four submatrix. 

e1 = e[[1]]; 

e2 = e[[2]]; 

f1 = f[[1]]; 

f2 = f[[2]]; 

e[[1]] // MatrixForm 

e[[2]] // MatrixForm 

f[[1]] // MatrixForm 

f[[2]] // MatrixForm 
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Transformation: 

First consider the submatrix e1 (the upper left hand corner). The process is exactly same for all four so we will just explain 

one in detail. This e1 is an 8 by 8 matrix. The transformation is to multiply the e1 as follows: U times e1 times U transpose where 

U is the 8 by 8 DCT matrix. This U will be an orthogonal matrix. This is a fixed matrix. There is only one 8 by 8 DCT matrix 

(although a few variation exist the one below is the most common one). Instead of U, we name it U8: 

g[k_] := Piecewise[{{1, k < 0}, {1, k > 0}}, 1/Sqrt[2]]; 

m = 8; 

U8 = Table[(4/m)*g[k] Cos[((2*n + 1)*k*Pi)/(2*m)], {k, 0, m - 1}, {n, 0, m - 1}]; 

V8 = Table[(4/m)*g[k] Cos[((2*n + 1)*k*Pi)/(2*m)], {k, 0, m - 1}, {n, 0, m - 1}] // MatrixForm 

 
We multiply e1 with the above DCT matrix as described before: 

T1 = N[U8.e1.Transpose[U8]]; 

N[U8.e1.Transpose[U8] // MatrixForm] 
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This is the end of the transformation of e1. We do the same for e2, f1 and f2. We do not display all the output. The transformation 

of e1, e2, f1, f2 are denoted by T1, T2, T3 and T4. 

T2 = N[U8.e2.Transpose[U8]]; 

T3 = N[U8.f1.Transpose[U8]]; 

T4 = N[U8.f2.Transpose[U8]]; 

 

Quantization: 

First consider T1 (the other are similar). The main idea is to ignore the lowest value. But how can we decide which one is 

lower and which one is not? This is why there is a fixed 8 by 8 luminance matrix (we call this Z in here) - you may call it a 

quantization matrix. This matrix is given below: 

Z = {{16, 11, 10, 16, 24, 40, 51, 61}, {12, 12, 14, 19, 26, 58, 60, 55}, {14, 13, 16, 24, 40, 57, 69, 56}, {14, 17, 22, 29, 51, 87, 80, 

62}, {18, 22, 37, 56, 68, 109, 103, 77}, {24, 35, 55, 64, 81, 104, 113, 92}, {49, 64, 78, 87, 103, 121, 120, 101}, {72, 92, 95, 98, 

112, 100, 103, 99}}; 

Z // MatrixForm 

 

The quantization matrix is designed to provide more resolution to more perceivable frequency components over less 

perceivable components (usually lower frequencies over high frequencies) in addition to transforming as many components to 0, 

which can be encoded with greatest efficiency. 

 
 

Each element of T1 is divided by the corresponding element of Z and round to the nearest integer. This is the quantization 

process. The quantization of T1 is denoted by qT1, the quantization of T2 is denoted by qT2 etc. 

qT1 = Table[Round[T1[[s]][[t]]/Z[[s]][[t]]], {s, 1, 8}, {t, 1, 8}]; 

qT1 // MatrixForm 
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qT2 = Table[Round[T2[[s]][[t]]/Z[[s]][[t]]], {s, 1, 8}, {t, 1, 8}]; 

qT2 // MatrixForm 

 
qT3 = Table[Round[T3[[s]][[t]]/Z[[s]][[t]]], {s, 1, 8}, {t, 1, 8}]; 

qT3 // MatrixForm 

 
qT4 = Table[Round[T4[[s]][[t]]/Z[[s]][[t]]], {s, 1, 8}, {t, 1, 8}]; 

qT4 // MatrixForm 

 
Coding: 

Now Huffman Coding is applied. Huffman coding is a lossless compression algorithm that eliminates redundant data. 

 

Inverting the process: 

This is NOT a true inversion because some steps for example the quantization are not invertible process. But we will get an 

approximation of the original image. The process is simple. Consider qT1 (quantization of T1): We will multiply each entry of 

qT1 by the corresponding entry of Z - we will call this matrix reverseqT1: This will be an approximation of T1. 

reverseqT1 = Table[qT1[[s]][[t]]*Z[[s]][[t]], {s, 1, 8}, {t, 1, 8}]; 

reverseqT1 // MatrixForm 
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Now multiply this above matrix on the left by U8 transpose and on the right by U8 - this will reverse the process of 

transformation. Of course, we round everything to nearest integer. This will be an approximation of e1. So we call it reverseT1. 

reverseT1 = Map[Round, N[Transpose[U8].reverseqT1.U8]]; 

reverseT1 // MatrixForm 

 
Finally we add 127 to each entry to make the value 0 and 255 (if the entry is below 0 or above 255, it is assumed the value 0 and 

255 respectively). We call it j1. 

p[x_] := x + 127; 

j1 = Map[p, reverseT1]; 

j1 // MatrixForm 

 
Do the same for other but not show the output: 

reverseqT2 = Table[qT2[[s]][[t]]*Z[[s]][[t]], {s, 1, 8}, {t, 1, 8}]; 

reverseT2 = Map[Round, N[Transpose[U8].reverseqT2.U8]]; 

j2 = Map[p, reverseT2]; 

j2 // MatrixForm 

 
 

reverseqT3 = Table[qT3[[s]][[t]]*Z[[s]][[t]], {s, 1, 8}, {t, 1, 8}]; 

reverseT3 = Map[Round, N[Transpose[U8].reverseqT3.U8]]; 

j3 = Map[p, reverseT3]; 

j3 // MatrixForm 

 
 

reverseqT4 = Table[qT4[[s]][[t]]*Z[[s]][[t]], {s, 1, 8}, {t, 1, 8}]; 
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reverseT4 = Map[Round, N[Transpose[U8].reverseqT4.U8]]; 

j4 = Map[p, reverseT4]; 

j4 // MatrixForm 

 
Put all j1, j2, j3 and j4 into a big matrix and create the image: 

j = Join[Join[j1, j2, 2], Join[j3, j4, 2]];  

Join[Join[j1, j2, 2], Join[j3, j4, 2]] // MatrixForm 

 
Image[j, "Byte"]   [Finally This will create the JPEG compressed Image of the smiley face. Since the image is artificially created 

with only the value of 0 and 1, we see that the compressed image has a lot of noise around the 8 by 8 blocks. But in the everyday 

image, the nearby pixels have approximately equal value and thus in the compressed image the noise is minimum and very hard 

to recognized it through naked eye.] 

 
Figure 25:  JPEG Compressed "smiley" image 

 

Advantages of JPEG compression: 

 Most common file used across the Web 

(80%). 

 It can make image files smaller. 

 Editing is not required to print a file in 

JPEG 

 JPEG files can be processed in your 

camera. 

Disadvantages of JPEG compression: 

 Compression discards some data. 

 Compression compromises image quality. 

 JPEG does not handle line drawings well 

and it does not support animation. 

 Compression is applied every time you 

save an image using JPEG. 

 

Conclusion 

 

This research project, which focused on three parts 

mentioned above, concluded that JPEG was more functional 

to compress images with little variation pixel to pixel in color 

or brightness. JPEG further generated better images at the 

same file size than SVD compression.  

In doing SVD compression using Wolfram Mathematica 

program as shown in Figures 3 to 13, it was concluded that 

the relation between compression ratio and the singular values 

(SVD coefficients) was a decreasing exponential function as 

shown in figure 14.  Also, there was no relation found in how 

long it took to compress an image versus the number of 

coefficients used as shown in figure 15.  

In the SVD compression experiment, the team concluded 

based on Mathematica’s timing data that there was no trend in 

compression time versus the number of SVD coefficients 

taken. The team speculated that this could be due to the fact 

that Mathematica calculates every singular value and then 

selects the required values, as well as due to random 

fluctuations in computer activity. The team also found that the 

fewer singular values were used, the smaller the resulting file 

size was.  Moreover, incrementing the number of coefficients 

caused a greater increase in file size when the number of 

coefficients was small versus when it was large. As the 
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number of coefficients increased, the compression ratio 

approached one. 

That Singular Value Decomposition (SVD) is an 

important topic in linear Algebra where students will put 

strong emphasis on exploring the application of image 

compression. This research project will encourage high school 

students to appreciate math by looking at the algorithm of 

SVD compression with the use of the properties and operation 

of matrices.  SVD compression can be an elective math for 

senior students and will serve as one of the culminating 

activity.  Students can compare and contrast how SVD can 

reconstruct the original image and how the Mathematica 

program can perform image compression.  Students can select 

different kinds of images and apply Mathematica program in 

order to compress the image and measure the compression 

ratio.  

Field experiment 1 (a graph of time versus file sizes) as 

shown in figure 18, revealed that there was apparently a 

general trend, with the highest file sizes around 10 AM and 

the lowest file sizes around 1 PM. Furthermore, the more 

detail was the image, the bigger was the file size. 

Field experiment 2 (a graph of different images taken at the 

same time of the day) as shown in figure 23, brought a point 

that the images with the smallest file sizes had the least detail 

and the images with the highest file size seemed to have more 

detail. 

The JPEG field experiments showed that JPEG is much 

better at compressing scenes that have little variation in light 

and tone. The image that was best compressed was an image 

of a uniformly blue sky, whereas JPEG had great difficulty 

compressing an image with dappled shadows and lots of 

colors. The experiment also showed that exposing an image 

with too much light, leading to a ‘washed out’ quality, could 

lead to smaller file sizes since some detail is eliminated. 

The theoretical JPEG hands on experiment showed the 

problems with basic JPEG compression. There are lots of 

noise around the borders of the 8 x 8 blocks that the algorithm 

splits the image into, and there are obvious compression 

artifacts around edges, particularly in images of text or line 

drawings. 

The team discovered that JPEG is more functional to 

compress images with little variation pixel to pixel in color or 

brightness. JPEG further generated better images at the same 

file size than SVD compression. 

For future work, it may consider studying other compression 

programs and their algorithm used by NASA such as wavelet-

based image compression like JPEG2000 and ICER.   
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